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Abstract: The global optimization is the best choice for parameter extraction of rule-based classifier. Restricted
methods have been published, and their limitations are concerned mainly on the slow convergence and being trapped
into local minima. To resolve the matter, this paper introduced in the fitness scaling genetic algorithm (FSGA) which
conducted the heuristic search as the parameter optimization for rule-based classifier. The FSGA rule-based classifier
was compared with GA, SA, and ACA, and the results prove that the proposed FSGA rule-based classifier is the most
robust and rapid.
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1 Introduction

In machine learning and statistics, classification is
the problem of identifying which of a set of categories a
new observation belongs, on the basis of a training set of
data containing observations whose category membership
is known. [1-3]. Thus the requirement is that new
individual items are placed into groups based on
quantitative information on one or more measurements,
traits or characteristics, etc., and based on the training set
in which previously decided groupings are already
established [4-6].

The most widely used classifiers are naïve Bayes
classifier [7], maximum entropy classifier [8], artificial
neural networks, support vector machine (SVM) [9],
k-nearest neighbor classifier [10], ant coolly algorithm
[11], random forest [12], radial basis function (RBF)
classifier [13], and artificial bee colony (ABC) [14] .
However, above classifiers perform feature transform
implicitly, so their generated classifiers are not
meaningful. It is difficult to extract meaningful rules to
determine how conclusions are drawn [15].

Rule based approaches become the most popular
techniques for pattern classification [16]. One advantage
is that it is capable of extracting classification rules that
are easy to realize for users [17]. However, to determine
the parameters in the rule-based model is a difficult
problem because the optimization function is a
multi-model, non-differential, non-convex problem which
can not be solved by traditional gradient-based techniques.
Therefore, scholars tend to integrate global search
techniques into the rule-based model. Immense global
methods are used as follows.

Wu et al. [18] confirmed that the genetic algorithm
(GA) has been widely applied as a soft computing
technique in various fields, while the ant colony
algorithm (ACA) is a rapidly developing tool used for
optimization. Based on the combination of the fast global
search ability of GA and the positive feedback
mechanism of ACO, they proposed a novel algorithm,
named genetic ant colony algorithm (GACA) in the
domain of pattern classification. Experiments show that
the classifier based on GACA can achieve better
performance than that the normal GA and ACA does.

Zheng et al. [19] introduced in an adaptive chaotic
particle swarm optimization (PSO), and utilized it to find
the optimal parameters of the rule-based classifier. The
ACPSO rule-based classifier was compared with those of
GA, ACA, SA, and PSO, and the results prove that the
proposed rule-based classifier by ACPSO is the most
robust and rapid among all the algorithms.

Castro [20] gave an exact representation of SVMs as
TSK fuzzy systems for every used kernel function.
Restricted methods to extract rules from SVMs had been
previously published. Their limitations were surpassed
with the presented extraction method. The behavior of
SVMs was explained by means of fuzzy logic and the
interpretability of the system was improved by
introducing the λ -fuzzy rule-based system ( λ -FRBS).
The λ -FRBS exactly approximated the SVM's decision
boundary and its rules and membership functions were
very simple, aggregating the antecedents with uninorms
as compensation operators. The rules of the λ -FRBS
were limited to two and the number of fuzzy propositions
in each rule only depends on the cardinality of the set of
support vectors. For that reason, the λ -FRBS overcomed
the course of dimensionality and problems with
high-dimensional data sets were easily solved with the λ 
-FRBS.

Lutu et al. [21] pointed out algorithms for feature
selection in predictive data mining for classification
problems attempt to select those features that are relevant,
and are not redundant for the classification task. A
relevant feature was defined as one which is highly
correlated with the target function. One problem with the
definition of feature relevance was that there is no
universally accepted definition of what it meant for a
feature to be highly correlated with the target function or
highly correlated with the other features. A new feature
selection algorithm which incorporated domain specific
definitions of high, medium and low correlations was
proposed in their paper. The proposed algorithm
conducted a heuristic search for the most relevant
features for the prediction task.

Cline et al. [16] proclaimed concept maps have been
heralded as an effective learning tool to help students
integrate new concepts into their existing set of
knowledge. However, the concept maps are also useful
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for evaluating student learning and helping to illuminate
where learning has occurred and where invalid or
incomplete ideas are held by the student. They had
developed a web-based concept map construction and
rule-based evaluation system called the Concept Mapping
Tool (CMT) that was being deployed at the university
level. After students used the drawing facility of CMT to
construct individual concept maps for a particular topic
that was presented in a course, they could then use the
rule-based evaluation system to grade their concept maps
against a criterion concept map created by the course
instructor. Students were given immediate feedback on
how to improve their concept maps, and they could use
CMT iteratively to improve their understanding of the
topic at hand. The rule-based evaluation or grading
system was modeled in part on a manual system for the
consistent scoring of concept maps. Their tests of the
system showed that there was a strong positive
correlation (>0.80) between the scores on students'
concept maps given by the course instructor grading
manually and by the CMT rule-based evaluation system.

Dressler et al. [22] described a programming
scheme for massively distributed systems that were
assumed to self-organize according to a given set of
simple rules. The focus of this investigation was
operation and control in sensor and actor networks
(SANETs). The main issues addressed by
self-organization techniques were scalability, network
lifetime, and real-time support. In the literature,
biological principles are often cited as inspirations for
technical solutions, especially in the domain of
self-organization. We developed a system named
rule-based sensor network (RSN) according to the
observed communication and control behavior in cellular
communication. Cellular signaling cascades allowed the
event-specific reaction initiated by individual cells in
collaboration with their direct neighbors. Information
between cells were transmitted via proteins and resulted
in the cascade of protein-protein or protein-DNA
interactions to produce a specific cellular answer, e.g. the
activation of cells or the transmission of mediators. These
processes were programmed in every individual cell and
lead to a coordinated reaction on a higher organization
platform. We transferred these mechanisms to operation
and control in SANETs. In particular, a rule-based
processing scheme relying on the main concepts of
cellular signaling cascades had been developed. It relies
on simple local rules and provides problem specific
reaction such as local actuation control and data
manipulation. We described this RSN technology and
demonstrate comparative simulation results that show the
feasibility of our approach.

Those aforementioned methods had suffered from
such shortcomings as slow convergence and being
trapped into l local minima [23-25]. In this paper, we
introduced in the fitness scaling genetic algorithm (FSGA)
[26]. It can avoid being trapped into local minima and
had a faster and steady speed. The structure of this paper
is organized as follows: Next section 2 gives the
rule-based model for classification; section 3 introduces
the genetic algorithm; section 4 gives the detailed
description of FSGA; experiments in section 5
demonstrate that FSGA method is more effective and

swift than GA[27], SA [28], and ACA [29]; final section
6 is devoted to conclusion and discussion.

2 Model

Assume the classification problem contains c classes
in the n dimensional data space, and there are p vectors Xi
= [xi1, xi2, … , xin] (i=1, 2,… , p) [30]. The rule-based
classifier is represented as [31]:

IF (T1min  xi1  T1max) AND (T2min  xi2 
T2max) AND  AND (Tnmin  xin  Tnmax)

THEN Xi  Class j

where Rj denotes a rule label, n is the number of attributes,
Tkmin and Tkmax are the minimum and maximum thresholds
of the kth attribute xik, respectively. The rule Rj is then
encoded as Tab. 1. A default rule is added at the end of
the rule list. It has an empty antecedent with consequent
as a class that represents maximum of uncovered class,
which is not covered by any of the discovered rules.

Tab. 1 Encoding of Rule
Antecedent
Element 1 … Antecedent

Element n
Consequent

Element
T1min T1max … Tnmin Tnmax j

To measure the accuracy and coverage of the rule,
the fitness function was chosen as the misclassification
error depicted as

1min 1max min max( ) ( , ,... , )

Number of cases find
1

Number of all cases
Number of accurately classified cases

Number of cases find
Number of accurately classified cases

1
Number of cases find

n nf f T T T T

  

 

T

(1)

where “Number of cases find/Number of all cases”
measures the coverage of a rule, and “Number of
accurately classified cases/Number of cases find”
measures the accuracy of a rule. The objective is defined
as a total measure of accuracy and coverage, which
provides an effective selection strategy to find a rule for
the class with the highest hit ratio if rules were to be fined
across all cases. Our task is to minimize the fitness
function, and construct the classifier by the rule model
with corresponding threshold T*.

 * arg min ( )
T

fT Τ (2)

3 Genetic Algorithm

For the genetic algorithm (GA), a population of
strings called chromosomes which encode candidate
solutions to an optimization problem, and evolves toward
better solutions [32]. The evolution usually starts from a
population of randomly generated individuals and
happens in generations. In each generation, the fitness of
every individual in the population is evaluated [33].
Multiple individuals are stochastically selected from the
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current population based on their fitness and modified to
form a new population. The new population is then used
in the next iteration of the algorithm. Commonly, the
algorithm terminates when either a maximum number of
generations has been produced, or a satisfactory fitness
level has been reached for the population. If the algorithm
has terminated due to a maximum number of generations,
a satisfactory solution may or may not have been reached
[34].

The GA includes three standard operators:
(a) Selection. This operator selects chromosomes in

the population for reproduction. The smaller the fitness of
the chromosome, the more times it is likely to be selected
to reproduce [35].

(b) Crossover: This operator randomly chooses a
locus and exchanges the subsequences before and after
that locus between two chromosomes to create offspring
[36]. There are three different types of cross over
functions: scatter, single point, and two-points. The
scatter crossover creates a random binary vector and
selects the genes where the vector is a 1 from the first
parent, and the genes where the vector is a 0 from the
second parent, and combines the genes to form the child.
Single-point crossover chooses a random integer n and
then selects vector entries numbered less than or equal to
n from the first parent and vector entries numbered
greater than n from the second parent. Afterwards, it
concatenates these entries to form a child vector [37].
Two-point crossover selects two random integers m and n.
It selects vector entries numbered less than or equal to m
from the first parent, vector entries numbered from m+1
to n from the second parent, and vector entries numbered
greater than n from the first parent [38, 39].

(c) Mutation: This operator randomly flips some of
the bits in a chromosome. Mutation can occur at each bit
position in a string with some probability, usually very
small [40, 41]. The common mutations contain
single-point and two-points.

4 Fitness Scaling Genetic Algorithm

Fitness scaling converts the raw fitness scores that
are returned by the fitness function to values in a range
that is suitable for the selection function [42]. The
selection function uses the scaled fitness values to select
the particles of the next generation. Then, the selection
function assigns a higher probability of selection to
particles with higher scaled values [43]. There exist
bundles of fitness scaling methods [44].

4.1 Linear Scaling

One of the most common scaling techniques is
traditional linear scaling, which remaps the fitness values
of each bee using the following equation

linear rawf a b f   (3)
where a and b are constants defined by users.

4.2 Rank Scaling

Another option is the rank scaling, which is obtained
by sorting all the bees by their raw fitness values

rankf r (4)
where r denotes the rank of the individual particle.

4.3 Power Scaling

The third option is the power scaling method which
are instead computed with

k
power rawf f (5)

Where k is a problem-dependent exponent that might
require change during a run to stretch or shrink the range
as needed.

4.4 Top Scaling

Top scaling is the 4th option and probably the most
simply scaling method [45]. Using this approach, several
of the top individuals have their fitness set to the same
value, with all remaining individuals have their fitness
values set to zero. This simple concept yields [46]

0
raw

top
raw

s f c
f

f c


  
(6)

Where s is the user-defined constant, c is the threshold.

4.5 Power-Rank Scaling Method

Among those fitness scaling methods, the power
scaling finds a solution nearly the most quickly due to
improvement of diversity but it suffers from instability
[47, 48], meanwhile, the rank scaling show stability on
different types of tests. Therefore, power-rank scaling
method was depicted as follows

1

k
i

i N
k

i
i

r
fit

r





(7)

where ri is the rank of ith individual, N is the number of
population. Our strategy contains a three-step process.
First, all individuals are sorted to obtain the ranks.
Second, powers are computed for exponential values k.
Third, the scaled values are normalized by dividing the
sum of the scaled values over the entire population.

5 Experiment

We implement several classifiers running on two
benchmark data sets (the housing data and diabetes data)
which are available in the UCI machine learning
repository. Here we let k equals to 5 by trial-and-error
method [49]. The results are all averaged over 10 runs.
Besides, we compared the FSGA method with GA, ACA,
and SA .

5.1 Housing Data

The results of different algorithms on housing data
are listed in Tab. 2. For the convergence iterations, the
FSGA takes the least of only 103.1, GA takes 108.3
epochs, ACA takes 115.4 epochs, and SA takes 204.3
epochs. For the misclassification Error, the proposed
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FSGA is 45.2% as the smallest among all algorithms,
conversely, misclassification errors of GA, ACA, and SA

are 46.7%, 46.1%, and 48.6%, respectively.

Tab. 2 Comparison on housing data
Algorithm Generation Misclassification Error Classification Rate

GA 108.3 46.7% 53.3%
ACA 115.4 46.1% 53.9%
SA 204.3 48.6% 51.4%

FSGA 103.1 45.2% 54.8%

Tab. 3 Comparison on diabetes data
Algorithm Generation Misclassification Error Classification Rate

GA 198.3 29.8% 70.2%
ACA 172.0 28.3% 71.7%
SA 284.9 31.5% 68.5%

FSGA 173.1 27.6% 73.4%

5.2 Diabetes Data

The results of different algorithms on diabetes data
are listed in Tab. 3. For generations, the FSGA only uses
173.1 epochs to find the global minimum, and other
algorithms uses much more generations: GA uses 198.3
epochs, ACA uses 172.0 epochs, and SA uses 284.9
epochs. For misclassification error, the FSGA reaches the
smallest amount (27.6%) again compared to GA of
29.8%, ACA of 28.3%, and SA of 31.5%.

From the above two benchmarks, it is obvious that
the FSGA method can find the best parameters of
rule-based classification model among all the algorithms.
Besides, the FSGA uses the least epochs to find the
solution. Therefore, the proposed method is efficient and
speedy.

6 Conclusion

In this paper, a novel classifier was proposed for
pattern classification. The classifier was based on rule
model and its parameters were determined by Fitness
Scaling Genetic Algorithm (FSGA) algorithm. Simulation
results on housing and diabetes data sets proved the
proposed FSGA method is superior to those based on GA,
ACA, and SA. Moreover, the calculative iteration of the
FSGA is the least. The future work involves application
of the introduced FSGA based classifier to other
industrial fields such as image processing [50], call
recognition [51], signal processing, and etc.
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